MTH 111

Midterm II

Spring 2012

Question 1. Suppose that the value of a specific bond in the stock market is given by

$$f(t) = t^4 - 12t^3 + 16t^2$$
 (t in years)

where t = 0 stands for the year 2010. Between the years [2010, 2016] when is the best time to a) purchase this bond

b) sell this bond

Question 1. Find the absolute minimum and the absolute maximum of the function

$$f(x) = (x^2 + 2x)^3$$

on the closed interval [-1,3].

Question 2. A poster is to have an area of 180 in^2 with 1-inch margins at the bottom and sides and a 2-inch margin at the top. What dimensions will give the largest printed area?

Question 3. Differentiate the following functions

a)
$$y = e^{\sin(2x)} - \frac{x}{\cos(x)} + 1$$

b) $y = 3^{\tan(x)} - \ln(x^2 + x)$

c)
$$y = \sqrt{\ln(x) - 7^x + 10}$$

Question 4. Given the function $f(x) = x^4 - 4x^3$.

- a) Find the intervals of increase and decrease,
- **b)** Find the critical point(s),
- c) Discuss the concavity of the function,
- d) Find the inflection points,
- e) Sketch the graph of f(x).

Question 4. Sketch the graph of a function f(x) satisfying the following properties

- $\lim_{x \to 1^+} f(x) = \infty$, $\lim_{x \to 1^-} f(x) = -\infty$
- $\lim_{x \to \infty} f(x) = 0$
- $\lim_{x \to -\infty} f(x) = 4$
- f(0) = 0

Question 6.

a)
$$\int \frac{2x^4 - 4x^2 + 1}{x^3} dx$$

- **b)** $\int \cos(x) e^{\sin(x)} dx$
- c) Find f(x) if $f'(x) = 2 e^x 2\cos(x)$ and f(0) = 2

Question 7. If f(x) is a continuous function on an interval [a, b], then

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} f(x_i)\Delta(x)$$

where

$$\Delta(x) = \frac{b-a}{n}, \quad x_i = a + i\Delta(x)$$

a) Explain briefly the formula above

b) Evaluate the integral
$$\int_0^3 (x^2 - 2x + 10) dx$$
 using Riemann sums.

Bonus. If $\int_0^{12} f(x) dx = 10$, then what is $\int_0^4 f(3x) dx = ?$