MTH 111

Midterm II

Question 1. Suppose that the value of a specific bond in the stock market is given by

$$
f(t)=t^{4}-12 t^{3}+16 t^{2} \quad(t \text { in years })
$$

where $t=0$ stands for the year 2010. Between the years [2010, 2016] when is the best time to
a) purchase this bond
b) sell this bond

Question 1. Find the absolute minimum and the absolute maximum of the function

$$
f(x)=\left(x^{2}+2 x\right)^{3}
$$

on the closed interval $[-1,3]$.

Question 2. A poster is to have an area of $180 \mathrm{in}^{2}$ with 1 -inch margins at the bottom and sides and a 2 -inch margin at the top. What dimensions will give the largest printed area?

Question 3. Differentiate the following functions
a) $y=e^{\sin (2 x)}-\frac{x}{\cos (x)}+1$
b) $y=3^{\tan (x)}-\ln \left(x^{2}+x\right)$
c) $y=\sqrt{\ln (x)-7^{x}+10}$

Question 4. Given the function $f(x)=x^{4}-4 x^{3}$.
a) Find the intervals of increase and decrease,
b) Find the critical point(s),
c) Discuss the concavity of the function,
d) Find the inflection points,
e) Sketch the graph of $f(x)$.

Question 4. Sketch the graph of a function $f(x)$ satisfying the following properties

- $\lim _{x \rightarrow 1^{+}} f(x)=\infty, \quad \lim _{x \rightarrow 1^{-}} f(x)=-\infty$
- $\lim _{x \rightarrow \infty} f(x)=0$
- $\lim _{x \rightarrow-\infty} f(x)=4$
- $f(0)=0$

Question 6.

a) $\int \frac{2 x^{4}-4 x^{2}+1}{x^{3}} d x$
b) $\int \cos (x) e^{\sin (x)} d x$
c) Find $f(x)$ if $f^{\prime}(x)=2-e^{x}-2 \cos (x)$ and $f(0)=2$

Question 7. If $f(x)$ is a continuous function on an interval $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} f\left(x_{i}\right) \Delta(x)
$$

where

$$
\Delta(x)=\frac{b-a}{n}, \quad x_{i}=a+i \Delta(x)
$$

a) Explain briefly the formula above
b) Evaluate the integral $\int_{0}^{3}\left(x^{2}-2 x+10\right) d x$ using Riemann sums.

Bonus. If $\int_{0}^{12} f(x) d x=10$, then what is $\int_{0}^{4} f(3 x) d x=$?

